Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;106(4):746-53.
doi: 10.1097/01.anes.0000264762.48920.80.

Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain

Affiliations

Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain

Daqing Ma et al. Anesthesiology. 2007 Apr.

Abstract

Background: Anesthetics, including isoflurane and nitrous oxide, an antagonist of the N-methyl-D-aspartate subtype of the glutamate receptor, have been demonstrated to induce apoptotic neurodegeneration when administered during neurodevelopment. Xenon, also an N-methyl-D-aspartate antagonist, not only lacks the characteristic toxicity produced by other N-methyl-D-aspartate antagonists, but also attenuates the neurotoxicity produced by this class of agent. Therefore, the current study sought to investigate xenon's putative protective properties against anesthetic-induced neuronal apoptosis.

Method: Separate cohorts (n = 5 or 6 per group) of 7-day-old rats were randomly assigned and exposed to eight gas mixtures: air, 75% nitrous oxide, 75% xenon, 0.75% isoflurane, 0.75% isoflurane plus 35% or 75% nitrous oxide, 0.75% isoflurane plus 30% or 60% xenon for 6 h. Rats were killed, and cortical and hippocampal apoptosis was assessed using caspase-3 immunostaining. In separate cohorts, cortices were isolated for immunoblotting of caspase 3, caspase 8, caspase 9, and cytochrome c. Organotypic hippocampal slices of postnatal mice pups were derived and cultured for 24 h before similar gas exposures, as above, and subsequently processed for caspase-3 immunostaining.

Results: In vivo administration of isoflurane enhances neuronal apoptosis. When combined with isoflurane, nitrous oxide significantly increases whereas xenon significantly reduces apoptosis to a value no different from that of controls. In vitro studies corroborate the ability of xenon to attenuate isoflurane-induced apoptosis. Isoflurane enhanced expression of indicators of the intrinsic and common apoptotic pathways; this enhancement was increased by nitrous oxide but attenuated by xenon.

Conclusions: The current study demonstrates that xenon prevents isoflurane-induced neonatal neuronal apoptosis.

PubMed Disclaimer

Publication types

LinkOut - more resources