Plasmid chromate resistance and chromate reduction
- PMID: 1741461
- DOI: 10.1016/0147-619x(92)90007-w
Plasmid chromate resistance and chromate reduction
Abstract
Compounds of hexavalent chromium (chromates and dichromates) are highly toxic. Plasmid genetic determinants for chromate resistance have been described in several bacterial genera, most notably in Pseudomonas. Resistance to chromate is associated with decreased chromate transport by the resistant cells. The genes for a hydrophobic polypeptide, ChrA, were identified in chromate resistance plasmids of Pseudomonas aeruginosa and Alcaligenes eutrophus. ChrA is postulated to be responsible for the outward membrane translocation of chromate anions. Widespread bacterial reduction of hexavalent chromate to the less toxic trivalent chromic ions is also known. Chromate reduction determinants have not, however, been found on bacterial plasmids or transposons. In different bacteria, chromate reduction is either an aerobic or an anaerobic process (but not both) and is carried out either by soluble proteins or by cell membranes. Chromate reduction may also be a mechanism of resistance to chromate, but this has not been unequivocally shown.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
