Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis
- PMID: 1741760
- PMCID: PMC1130603
- DOI: 10.1042/bj2800079
Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis
Abstract
1. A model of the three-dimensional structure of papaya proteinase omega, the most basic cysteine proteinase component of the latex of papaya (Carica papaya), was built from its amino acid sequence and the two currently known high-resolution crystal structures of the homologous enzymes papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14). The method used a knowledge-based approach incorporated in the COMPOSER suite of programs and refinement by using the interactive graphics program FRODO on an Evans and Sutherland PS 390 and by energy minimization using the GROMOS program library. 2. Functional similarities and differences between the three cysteine proteinases revealed by analysis of pH-dependent kinetics of the acylation process of the catalytic act and of the reactions of the enzyme catalytic sites with substrate-derived 2-pyridyl disulphides as two-hydronic-state reactivity probes are reported and discussed in terms of the knowledge-based model. 3. To facilitate analysis of complex pH-dependent kinetic data, a multitasking application program (SKETCHER) for parameter estimation by interactive manipulation of calculated curves and a simple method of writing down pH-dependent kinetic equations for reactions involving any number of reactive hydronic states by using information matrices were developed. 4. Papaya proteinase omega differs from the other two enzymes in the ionization characteristics of the common (Cys)-SH/(His)-Im+H catalytic-site system and of the other acid/base groups that modulate thiol reactivity towards substrate-derived inhibitors and the acylation process of the catalytic act. The most marked difference in the Cys/His system is that the pKa for the loss of the ion-pair state to form -S-/-Im is 8.1-8.3 for papaya proteinase omega, whereas it is 9.5 for both actinidin and papain. Papaya proteinase omega is similar to actinidin in that it lacks the second catalytically influential group with pKa approx. 4 present in papain and possesses a catalytically influential group with pKa 5.5-6.0. 5. Papaya proteinase omega occupies an intermediate position between actinidin and papain in the sensitivity with which hydrophobic interaction in the S2 subsite is transmitted to produce changes in transition-state geometry in the catalytic site, a fact that may be linked with differences in specificity in P2-S2 interaction exhibited by the three enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
-
Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain.Biochem J. 1994 Jun 15;300 ( Pt 3)(Pt 3):805-20. doi: 10.1042/bj3000805. Biochem J. 1994. PMID: 8010964 Free PMC article.
-
Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics.Biochem J. 1988 Dec 1;256(2):543-58. doi: 10.1042/bj2560543. Biochem J. 1988. PMID: 3223929 Free PMC article.
-
Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment.Biochem J. 1987 Oct 1;247(1):181-93. doi: 10.1042/bj2470181. Biochem J. 1987. PMID: 2825655 Free PMC article.
-
Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors.Biol Chem. 1997 Mar-Apr;378(3-4):141-50. Biol Chem. 1997. PMID: 9165064 Review.
-
Sequence homologies, hydrophobic profiles and secondary structures of cathepsins B, H and L: comparison with papain and actinidin.Biochimie. 1988 Oct;70(10):1335-42. doi: 10.1016/0300-9084(88)90004-1. Biochimie. 1988. PMID: 3148320 Review.
Cited by
-
Evaluation of hydrogen-bonding and enantiomeric P2-S2 hydrophobic contacts in dynamic aspects of molecular recognition by papain.Biochem J. 1992 Nov 1;287 ( Pt 3)(Pt 3):881-9. doi: 10.1042/bj2870881. Biochem J. 1992. PMID: 1445247 Free PMC article.
-
Ionization characteristics of the Cys-25/His-159 interactive system and of the modulatory group of papain: resolution of ambiguity by electronic perturbation of the quasi-2-mercaptopyridine leaving group in a new pyrimidyl disulphide reactivity probe.Biochem J. 1993 Feb 15;290 ( Pt 1)(Pt 1):289-96. doi: 10.1042/bj2900289. Biochem J. 1993. PMID: 8439297 Free PMC article.
-
Catalytic-site characteristics of the porcine calpain II 80 kDa/18 kDa heterodimer revealed by selective reaction of its essential thiol group with two-hydronic-state time-dependent inhibitors: evidence for a catalytic site Cys/His interactive system and an ionizing modulatory group.Biochem J. 1993 Feb 15;290 ( Pt 1)(Pt 1):75-83. doi: 10.1042/bj2900075. Biochem J. 1993. PMID: 8439300 Free PMC article.
-
Characterization of retinaldehyde dehydrogenase 3.Biochem J. 2006 Feb 15;394(Pt 1):67-75. doi: 10.1042/BJ20050918. Biochem J. 2006. PMID: 16241904 Free PMC article.
-
Clarification of the pH-dependent kinetic behaviour of papain by using reactivity probes and analysis of alkylation and catalysed acylation reactions in terms of multihydronic state models: implications for electrostatics calculations and interpretation of the consequences of site-specific mutations such as Asp-158-Asn and Asp-158-Glu.Biochem J. 1993 Aug 15;294 ( Pt 1)(Pt 1):201-10. doi: 10.1042/bj2940201. Biochem J. 1993. PMID: 8103322 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials