Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 15;305(2):726-34.
doi: 10.1016/j.ydbio.2007.03.010. Epub 2007 Mar 13.

A GATA/RUNX cis-regulatory module couples Drosophila blood cell commitment and differentiation into crystal cells

Affiliations
Free article

A GATA/RUNX cis-regulatory module couples Drosophila blood cell commitment and differentiation into crystal cells

Géraldine Ferjoux et al. Dev Biol. .
Free article

Abstract

Members of the RUNX and GATA transcription factor families play critical roles during hematopoiesis from Drosophila to mammals. In Drosophila, the formation of the crystal cell hematopoietic lineage depends on the continuous expression of the lineage-specific RUNX factor Lozenge (Lz) and on its interaction with the GATA factor Serpent (Srp). Crystal cells are the main source of prophenoloxidases (proPOs), the enzymes required for melanization. By analyzing the promoter regions of several insect proPOs, we identify a conserved GATA/RUNX cis-regulatory module that ensures the crystal cell-specific expression of the three Drosophila melanogaster proPO. We demonstrate that activation of this module requires the direct binding of both Srp and Lz. Interestingly, a similar GATA/RUNX signature is over-represented in crystal cell differentiation markers, allowing us to identify new Srp/Lz target genes by genome-wide screening of Drosophila promoter regions. Finally, we show that the expression of lz in the crystal cells also relies on Srp/Lz-mediated activation via a similar module, indicating that crystal cell fate choice maintenance and activation of the differentiation program are coupled. Based on our observations, we propose that this GATA/RUNX cis-regulatory module may be reiteratively used during hematopoietic development through evolution.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources