Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep;76(5):733-44.
doi: 10.1113/expphysiol.1991.sp003540.

Avian lower intestine adapts to dietary salt (NaCl) depletion by increasing transepithelial sodium transport and microvillous membrane surface area

Affiliations
Free article

Avian lower intestine adapts to dietary salt (NaCl) depletion by increasing transepithelial sodium transport and microvillous membrane surface area

V Sødring Elbrønd et al. Exp Physiol. 1991 Sep.
Free article

Abstract

A tissue sampling scheme for tandem assessments of whole-organ physiology and ultrastructure was applied to the lower intestine (coprodaeum) of White Plymouth Rock hens on low- and high-NaCl diets. The objective was to correlate net amiloride-sensitive Na transport determined using the Ussing chamber with the plasma membrane surface areas due to microvilli at the epithelial cell apex. Hens kept on the low-NaCl diet for 3-4 weeks displayed a substantial increase in short-circuit current and in total microvillous membrane surface area. The latter rose from a group mean +/- S.E.M. of about 90 +/- 9.7 cm2 to one of 200 +/- 38 cm2 per organ. An increase in epithelial cell membrane contributed to, but did not fully explain, the increase in microvillous area. No differences in mean cell height or mean cell volume were found but the average cell in the low-NaCl birds was better developed in possessing a greater surface area of microvilli. On the high-NaCl diet, the epithelium was 33 +/- 2.7 microns tall and contained about 270 +/- 15 million cells. Each cell had a volume, on average, of 540 +/- 59 microns 3 and a microvillous surface of 32 +/- 2.6 microns 2. After NaCl depletion, there were 420 +/- 75 million cells and the average microvillous surface was 49 +/- 5.3 microns 2 per cell. The morphological adaptations alone do not explain the increased net Na transport found on the low-NaCl diet. Of cardinal importance is greater density of open Na channels in apical cell membranes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources