PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli
- PMID: 17420206
- PMCID: PMC1891003
- DOI: 10.1128/AAC.00052-07
PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli
Abstract
When a bactericidal antibiotic is added to a growing bacterial culture, the great majority of the bacterial population is killed but a small number of metabolically quiescent bacteria called persisters survive antibiotic treatment. The mechanism of this bacterial persistence is poorly understood. In Escherichia coli, we identified a new persistence gene, phoU, whose inactivation leads to a generalized higher susceptibility than that of the parent strain to a diverse range of antibiotics, including ampicillin, norfloxacin, and gentamicin, and stresses, such as starvation, acid pH, heat, peroxide, weak acids, and energy inhibitors, especially in stationary phase. The PhoU mutant phenotype could be complemented by a functional phoU gene. Mutation in PhoU leads to a metabolically hyperactive status of the cell, as shown by an increased expression of energy production genes, flagella, and chemotaxis genes and a defect in persister formation. PhoU, whose expression is regulated by environmental changes like nutrient availability and age of culture, is a global negative regulator beyond its role in phosphate metabolism and facilitates persister formation by the suppression of many important cellular metabolic processes. A new model of persister formation based on PhoU as a persister switch is proposed. PhoU may be an ideal drug target for designing new drugs that kill persister bacteria for more effective control of bacterial infections.
Figures




Similar articles
-
Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli.FEMS Microbiol Lett. 2010 Feb;303(1):33-40. doi: 10.1111/j.1574-6968.2009.01857.x. Epub 2009 Nov 17. FEMS Microbiol Lett. 2010. PMID: 20041955
-
Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli.J Bacteriol. 2004 Dec;186(24):8172-80. doi: 10.1128/JB.186.24.8172-8180.2004. J Bacteriol. 2004. PMID: 15576765 Free PMC article.
-
Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence.J Bacteriol. 2011 Jul;193(14):3598-605. doi: 10.1128/JB.00085-11. Epub 2011 May 20. J Bacteriol. 2011. PMID: 21602347 Free PMC article.
-
A Historical Perspective on Bacterial Persistence.Methods Mol Biol. 2016;1333:3-13. doi: 10.1007/978-1-4939-2854-5_1. Methods Mol Biol. 2016. PMID: 26468095 Review.
-
Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics.Drug Resist Updat. 2018 May;38:12-26. doi: 10.1016/j.drup.2018.03.002. Epub 2018 Apr 10. Drug Resist Updat. 2018. PMID: 29857815 Review.
Cited by
-
The Role of Efflux and Physiological Adaptation in Biofilm Tolerance and Resistance.J Biol Chem. 2016 Jun 10;291(24):12565-12572. doi: 10.1074/jbc.R115.707257. Epub 2016 Apr 21. J Biol Chem. 2016. PMID: 27129224 Free PMC article. Review.
-
The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy.J Bacteriol. 2010 Jul;192(13):3379-84. doi: 10.1128/JB.00056-10. Epub 2010 Apr 30. J Bacteriol. 2010. PMID: 20435730 Free PMC article.
-
The Global Regulator PhoU Positively Controls Growth and Butenyl-Spinosyn Biosynthesis in Saccharopolyspora pogona.Front Microbiol. 2022 Jun 9;13:904627. doi: 10.3389/fmicb.2022.904627. eCollection 2022. Front Microbiol. 2022. PMID: 35756073 Free PMC article.
-
Membrane Transporters of the Major Facilitator Superfamily Are Essential for Long-Term Maintenance of Phenotypic Tolerance to Multiple Antibiotics in E. coli.Microbiol Spectr. 2021 Dec 22;9(3):e0184621. doi: 10.1128/Spectrum.01846-21. Epub 2021 Nov 17. Microbiol Spectr. 2021. PMID: 34787438 Free PMC article.
-
Absence of tmRNA Increases the Persistence to Cefotaxime and the Intercellular Accumulation of Metabolite GlcNAc in Aeromonas veronii.Front Cell Infect Microbiol. 2020 Feb 28;10:44. doi: 10.3389/fcimb.2020.00044. eCollection 2020. Front Cell Infect Microbiol. 2020. PMID: 32185140 Free PMC article.
References
-
- Balaban, N. Q., J. Merrin, R. Chait, L. Kowalik, and S. Leibler. 2004. Bacterial persistence as a phenotypic switch. Science 305:1622-1625. - PubMed
-
- Bauer, A. W., W. M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45:493-496. - PubMed
-
- Bigger, J. W. 1944. Treatment of staphylococcal infections with penicillin. Lancet ii:497-500.
-
- Cole, S., R. Brosch, J. Parkhill, T. Garnier, D. H. C. Churcher, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M.-A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature (London) 393:537-544. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases