Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 May;16(3):184-91.
doi: 10.1097/MNH.0b013e3280c8eed3.

New insights into structural patterns encountered in glomerulosclerosis

Affiliations
Review

New insights into structural patterns encountered in glomerulosclerosis

Michel LeHir et al. Curr Opin Nephrol Hypertens. 2007 May.

Abstract

Purpose of review: The term 'focal segmental glomerulosclerosis' covers a variety of diseases with different histopathological patterns. There is a need for clues to interpret histological findings in terms of etiology. Studies in transgenic animal models published in recent years have targeted the podocyte with respect to its impact on the development of glomerulosclerosis. Our aim was to survey those models in an attempt to discover correlations between histopathological patterns and pathogenic mechanisms.

Recent findings: The most obvious conclusion to draw from recent studies is that virtually all forms of glomerulosclerosis start with a lesion or dysfunction of podocytes. In hereditary glomerular diseases and transgenic animal models, two patterns of glomerular degeneration may be distinguished. All diseases with late onset appear to follow the 'classic' pathway to focal segmental glomerulosclerosis, starting with an adhesion of the tuft to the Bowman's capsule and eventually leading to nephron degeneration. In contrast, those with early onset frequently exhibit changes that indicate a severe dysregulation of podocyte function resulting in diffuse global endocapillary damage (i.e. mesangial expansion and rarefaction of capillaries).

Summary: Such insights derived from animal models might be useful in elucidating the mechanisms of multifactorial human diseases like diabetic glomerulopathy.

PubMed Disclaimer

MeSH terms

Substances