Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul-Aug;73(7-8):1163-70.
doi: 10.1016/0300-9084(91)90161-s.

Suppression of defective-sporulation phenotypes by mutations in transcription factor genes of Bacillus subtilis

Affiliations

Suppression of defective-sporulation phenotypes by mutations in transcription factor genes of Bacillus subtilis

C Ng et al. Biochimie. 1991 Jul-Aug.

Abstract

Mutations in the Bacillus subtilis major RNA polymerase sigma factor gene (rpoD/crsA47) and a sensory receiver gene (spoOA/rvtA11) are potent intergenic suppressors of several stage 0 sporulation mutations (spoOB, OE, OF & OK). We show here that these suppressors also rescue temperature-sensitive sporulation phenotypes (Spots) caused by mutations in RNA polymerase, ribosomal protein, and protein synthesis elongation factor EF-G genes. The effects of the crsA and rvtA suppressors on RNA polymerase and ribosomal protein spots mutations are similar to those previously described for mutations in another intergenic suppressor gene rev. We have examined the effects of rvtA and crsA mutations on the expression of sporulation-associated membrane proteins, including flagellin and penicillin binding protein 5* (PBP 5*). Both suppressors restored sporulation and synthesis of PBP 5* in several spoO mutants. However, only rvtA restored flagellin synthesis in spoO suppressed backgrounds. The membrane protein phenotypes resulting from the presence of crsA or rvtA suppressors in spoO strains suggests that these suppressors function via distinct molecular mechanisms. The rvtA and crsA mutations are also able to block the ability of ethanol to induce spoO phenocopies at concentrations of ethanol which prevent sporulation in wild type cells. The effects of ethanol on sporulation-associated membrane protein synthesis in wild type and suppressor containing strains have been examined.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources