Sequential configuration model for firing patterns in local neural networks
- PMID: 1742371
- DOI: 10.1007/BF00216967
Sequential configuration model for firing patterns in local neural networks
Abstract
This paper presents a sequential configuration model to represent the coordinated firing patterns of memory traces in groups of neurons in local networks. Computer simulations are used to study the dynamic properties of memory traces selectively retrieved from networks in which multiple memory traces have been embedded according to the sequential configuration model. Distinct memory traces which utilize the same neurons, but differ only in temporal sequencing are selectively retrievable. Firing patterns of constituent neurons of retrieved memory traces exhibit the main properties of neurons observed in multi microelectrode recordings. The paper shows how to adjust relative synaptic weightings so as to control the disruptive influences of cross-talk in multipy-embedded networks. The theoretical distinction between (primarily anatomical) beds and (primarily physiological) realizations underlines the fundamentally stochastic nature of network firing patterns, and allows the definition of 4 degrees of clarity of retrieved memory traces.
References
Publication types
MeSH terms
LinkOut - more resources
Medical