Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2007 Apr;131(4):1035-41.
doi: 10.1378/chest.06-2758.

Roles of angiopoietin-1 and angiopoietin-2 on airway microvascular permeability in asthmatic patients

Affiliations
Randomized Controlled Trial

Roles of angiopoietin-1 and angiopoietin-2 on airway microvascular permeability in asthmatic patients

Hiroshi Kanazawa et al. Chest. 2007 Apr.

Abstract

Background: Vascular endothelial growth factor (VEGF) increases microvascular permeability. Recently, considerable attention has been devoted to the physiologic roles of angiopoietin-1 and angiopoietin-2 as regulatory factors of VEGF. This study was designed to examine the roles of angiopoietin-1 and angiopoietin-2 in controlling airway microvascular permeability in asthma.

Methods: Levels of these angiogenic factors and airway vascular permeability index were examined in 30 asthmatics and 12 control subjects. After 2-week run-in period, all asthmatics were randomly assigned to receive fluticasone propionate (400 mug/d) or montelukast (10 mg) for 12 weeks.

Results: VEGF, angiopoietin-1, and angiopoietin-2 levels in induced sputum were significantly higher in asthmatics than in control subjects. We found an inverse correlation between angiopoietin-1 level and vascular permeability index in asthmatics, while there was a positive correlation between angiopoietin-2 level and that index. VEGF and angiopoietin-1 levels were significantly decreased after fluticasone therapy, while VEGF and angiopoietin-2 levels were significantly decreased after montelukast therapy. Although VEGF levels after treatment were different between two groups, vascular permeability index in the montelukast group was the same level as that in the fluticasone group. Moreover, improvement in vascular permeability index after fluticasone therapy was inversely correlated with decrease in angiopoietin-1 level, while that after montelukast therapy was positively correlated with decrease in angiopoietin-2 level.

Conclusions: Angiopoietin-1 and angiopoietin-2 play complementary and coordinated roles in regulating microvascular permeability stimulated by VEGF in asthma. Combination of corticosteroids with leukotriene antagonists might effectively improve plasma leakage and provide a new strategy in treating bronchial asthma.

PubMed Disclaimer

Publication types

MeSH terms