Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jun;45(6):1904-11.
doi: 10.1128/JCM.02500-06. Epub 2007 Apr 11.

Comparative genomics of Canadian epidemic lineages of methicillin-resistant Staphylococcus aureus

Affiliations
Comparative Study

Comparative genomics of Canadian epidemic lineages of methicillin-resistant Staphylococcus aureus

Sara Christianson et al. J Clin Microbiol. 2007 Jun.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen that has disseminated throughout Canadian hospitals and communities. Pulsed-field gel electrophoresis of over 9,300 MRSA isolates obtained from the Canadian Nosocomial Infection Surveillance Program has identified 10 epidemic strain types in Canada (CMRSA1 to CMRSA10). In an attempt to determine specific genetic factors that have contributed to their high prevalence in community and/or hospital settings, the genomic content of representative isolates for each of the 10 Canadian epidemic types was compared using comparative genomic hybridizations. Comparison of the community-associated Canadian epidemic isolates (CMRSA7 and CMRSA10) with the hospital-associated Canadian epidemic isolates revealed one open reading frame (ORF) (SACOL0046) encoding a putative protein belonging to a metallo-beta-lactamase family, which was present only in the community-associated Canadian epidemic isolates. A more restricted comparison involving only the most common hospital-associated Canadian epidemic isolates (CMRSA1 and CMRSA2) with the community-associated Canadian epidemic isolates did reveal additional factors that might be contributing to their prevalence in the community and hospital settings, which included ORFs encoding potential virulence factors involved in capsular biosynthesis, serine proteases, epidermin, adhesion factors, regulatory functions, leukotoxins, and exotoxins.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
MRSA isolates obtained through the CNISP from 1995 to 2004.

References

    1. Baba, T., F. Takeuchi, M. Kuroda, H. Yuzawa, K.-I. Aoki, A. Oguchi, Y. Nagai, N. Iwama, K. Asano, T. Naimi, H. Kuroda, L. Cui, K. Yamamoto, and K. Hiramatsu. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819-1827. - PubMed
    1. Cassat, J. E., P. M. Dunman, F. McAleese, E. Murphy, S. J. Projan, and M. S. Smeltzer. 2005. Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J. Bacteriol. 187:576-592. - PMC - PubMed
    1. Enright, M. C., N. P. J. Day, C. E. Davies, S. J. Peacock, and B. G. Spratt. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38:1008-1015. - PMC - PubMed
    1. Fitzgerald, J. R., D. E. Sturdvent, S. M. Mackie, S. R. Gill, and J. M. Musser. 2001. Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc. Natl. Acad. Sci. USA 98:8821-8826. - PMC - PubMed
    1. Gilbert, M., J. MacDonald, D. Gregson, J. Siushansian, K. Zhang, S. Elsayed, K. Laupland, T. Louie, K. Hope, M. Mulvey, J. Gillespie, D. Nielsen, V. Wheeler, M. Louie, A. Honish, G. Keays, and J. Conly. 2006. Outbreak in Alberta of community-acquired (USA300) methicillin-resistant Staphylococcus aureus in people with a history of drug use, homelessness or incarceration. CMAJ 175:149-154. - PMC - PubMed

Publication types

MeSH terms

Substances