Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;293(1):F371-81.
doi: 10.1152/ajprenal.00475.2006. Epub 2007 Apr 11.

Antioxidant vitamins induce angiogenesis in the normal pig kidney

Affiliations
Free article

Antioxidant vitamins induce angiogenesis in the normal pig kidney

Elena Daghini et al. Am J Physiol Renal Physiol. 2007 Jul.
Free article

Abstract

The effects of chronic supplementation with antioxidant vitamins on angiogenesis are controversial. The aim of the present study was to evaluate in kidneys of normal pigs the effect of chronic supplementation with vitamins E and C, at doses that are effective in reducing oxidative stress and attenuating angiogenesis under pathological conditions. Domestic pigs were randomized to receive a 12-wk normal diet without (n = 6) or with antioxidant vitamins supplementation (1g/day vitamin C, 100 IU.kg(-1).day(-1) vitamin E; n = 6). Electron beam computed tomography (CT) was used to evaluate renal cortical vascular function in vivo, and micro-CT was to assess the spatial density and average diameter of cortical microvessels (diameter <500 microm) ex vivo. Oxidative stress and expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1alpha were evaluated in renal tissue. The effects of increasing concentrations of the same vitamins on redox status and angiogenesis were also evaluated in human umbilical vascular endothelial cells (HUVEC). Compared with normal pigs, the density of cortical transmural microvessels was significantly greater in vitamin-supplemented pigs (149.0 +/- 11.7 vs. 333.8 +/- 48.1 vessel/cm(2), P < 0.05), whereas the cortical perfusion response to ACh was impaired. This was accompanied by a significant increase in tissue oxidative stress and levels of VEGF and HIF-1alpha. A low dose of antioxidant decreased, whereas a high dose increased, HUVEC oxidative stress and angiogenesis, which was partly mediated by hydrogen peroxide. Antioxidant vitamin supplementation can increase tissue oxidative redox and microvascular proliferation in the normal kidney, probably due to a biphasic effect that depends on basal redox balance.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources