Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr;8(4):493-500.
doi: 10.2174/138945007780362764.

The apoptotic pathway as a therapeutic target in sepsis

Affiliations
Review

The apoptotic pathway as a therapeutic target in sepsis

Doreen E Wesche-Soldato et al. Curr Drug Targets. 2007 Apr.

Abstract

Recent research has yielded many interesting and potentially important therapeutic targets in sepsis. Specifically, the effects of antagonistic anti-cytokine therapies (tumor necrosis factor-alpha [TNF-alpha], interleukin-1 [IL-1]) and anti-endotoxin strategies utilizing antibodies against endotoxin or endotoxin receptor/carrier molecules (anti-CD14 or anti-LPS-binding protein) have been studied. Unfortunately, these approaches often failed clinically, and in many cases, the efficacy of these treatments was dependent on the severity of sepsis. Recently, clinical trials using insulin to lock blood glucose levels and activated protein C treatment have showed that while they provided some survival benefit, their efficacy does not appear to be predicated solely upon anti-inflammatory effects. Here, we will review work done in animal models of polymicrobial sepsis and clinical findings that support the hypothesis that apoptosis in the immune system is a pathologic event in sepsis that can be a therapeutic target. In this respect, experimental studies looking at the septic animal suggest that loss of lymphocytes during sepsis may be due to dysregulated apoptosis and that this appears to be brought on by a variety of mediators effecting 'intrinsic' as well as 'extrinsic' cell death pathways. From a therapeutic perspective this has provided a number of novel targets for clinically successful current, as well as future therapies, such as caspases (caspase inhibition/protease inhibition), pro-apoptotic protein-expression (via administration and/or over-expression of Bcl-2) and the death receptor family Fas-FasL (via. FasFP [fas fusion protein] and the application of siRNA against a number pro-apoptotic factors).

PubMed Disclaimer

Figures

Figure 1
Figure 1
Both the extrinsic and intrinsic arms of the death pathway contain possible targets that can be exploited for therapy.

References

    1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–1310. - PubMed
    1. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesanti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med. 1995;333:1025–1032. - PubMed
    1. Hayes MA, Timmins AC, Yau EHS, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–1722. - PubMed
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–1377. - PubMed
    1. Rice TW, Bernard GR. Therapeutic interventions and targets for sepsis. Annual Review Medicine. 2005;56:225–248. - PubMed

Publication types