Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;35(7):1119-25.
doi: 10.1124/dmd.106.013813. Epub 2007 Apr 12.

Application of the dispersion model to describe disposition kinetics of markers in the dual perfused rat liver

Affiliations

Application of the dispersion model to describe disposition kinetics of markers in the dual perfused rat liver

Selma Sahin et al. Drug Metab Dispos. 2007 Jul.

Abstract

The liver receives two blood supplies, portal and hepatic, yet most in situ studies use only portal perfusion. A model based on dispersion principles was developed to provide baseline data of the dual perfused rat liver preparation by characterizing the temporal outflow profiles of noneliminated reference markers (vascular marker, red blood cells; extracellular markers, albumin, sucrose; and intracellular markers, urea, water). The model consists of two components: the common and a specific arterial space operating in parallel. The common space receives all the portal flow and some of the arterial flow; the remaining arterial flow perfuses the specific space. Each space is divided into three subspaces: vascular, interstitial, and intracellular. The extent of axial spreading of solute on passage through the common and specific spaces is characterized by their respective dispersion numbers, D(N). The model was fully characterized by analysis of the outflow data following independent bolus administration into the portal vein and hepatic artery. The model provided a good fit of the data for all reference compounds. The estimate of the fraction of the total space assigned to the specific arterial space varied from 4 to 11%, with a mean value of 9%. The estimated D(N) was always small (<0.25) and tended to be greater for the common space (0.08-0.23) than the specific space (0.05-0.12). However, for each space, there was no significant difference in the D(N) value among all reference markers; this is assumed to arise because all markers are reflecting a common feature, the heterogeneity of the microvasculature.

PubMed Disclaimer

Similar articles

Cited by

  • Drug structure-transport relationships.
    Roberts MS. Roberts MS. J Pharmacokinet Pharmacodyn. 2010 Dec;37(6):541-73. doi: 10.1007/s10928-010-9174-0. Epub 2010 Nov 24. J Pharmacokinet Pharmacodyn. 2010. PMID: 21107662 Free PMC article. Review.

Publication types

MeSH terms

LinkOut - more resources