Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Dec 2;294(1-2):109-12.
doi: 10.1016/0014-5793(91)81353-a.

Striking structural and functional similarities suggest that intestinal sucrase-isomaltase, human lysosomal alpha-glucosidase and Schwanniomyces occidentalis glucoamylase are derived from a common ancestral gene

Affiliations
Free article
Comparative Study

Striking structural and functional similarities suggest that intestinal sucrase-isomaltase, human lysosomal alpha-glucosidase and Schwanniomyces occidentalis glucoamylase are derived from a common ancestral gene

H Y Naim et al. FEBS Lett. .
Free article

Abstract

Sequence comparison of the primary structure of the yeast Schwanniomyces occidentalis glucoamylase (GAM) with GAMs in different microorganisms did not reveal significant similarities. By contrast, striking similarities were, surprisingly, found with 3 mammalian secretory and integral membrane proteins: the 2 subunits of intestinal brush border sucrase-isomaltase and human lysosomal alpha-glucosidase. The similarities among these proteins are found as clusters of up to 8 amino acids and distributed all over the protein sequences. The major sequence differences are found in the N-terminal regions accounting, probably, for the different cellular locations of these proteins. The high level of similarities between sucrase, isomaltase, Sch. occidentalis GAM and human lysosomal alpha-glucosidase suggest that these proteins are derived from the same ancestral gene. To our knowledge, this is the first report that describes similarities between a yeast secretory protein and mammalian secretory and integral membrane proteins.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources