Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 4:1152:64-74.
doi: 10.1016/j.brainres.2007.03.039. Epub 2007 Mar 19.

The functional difference between transient and sustained K+ currents on the action potentials in tetrodotoxin-resistant adult rat trigeminal ganglion neurons

Affiliations

The functional difference between transient and sustained K+ currents on the action potentials in tetrodotoxin-resistant adult rat trigeminal ganglion neurons

Shinki Yoshida et al. Brain Res. .

Abstract

To determine whether there is a difference between a transient K(+) current (I(A)) and a sustained K(+) current (I(K)) regarding the neuronal function in small-diameter adult rat trigeminal ganglion (TG) neurons, which were insensitive to tetrodotoxin (TTX, 1 microM), we performed two different types of experiments. Primary cultures of dissociated TG neurons were prepared, and electrophysiological recordings were performed with the whole-cell configuration using the patch-clamp technique. In the voltage-clamp mode, two distinct K(+) current components, (I(A)) and (I(K)), were identified, and two different components (59.5% and 96.3%) of I(K) to the total K(+) current were observed at a +50 mV step-pulse. The IC(50) value for 4-aminoprydine (4-AP, 0.05-50 mM), which inhibited the I(A) by 50%, was 0.7 mM. That for tetraethylammonium (TEA, 0.02-20 mM) to inhibit 50% of I(K) was 1.5 mM. In the current-clamp mode, we used 0.5 mM 4-AP and 2 mM TEA at each concentration nearly equal to the IC(50) value. Irrespective of the absence or presence of TEA (2 mM), 0.5 mM 4-AP application increased the number of action potentials due to the decreased duration of the depolarization phase (DDP). TEA in the presence and absence of 4-AP prolonged the duration of action potentials as well as the duration of repolarization phase (DRP). These results suggested that I(A) and I(K) had independent effects regulating the intrinsic firing properties of the action potential number and timing, respectively, in adult rat TTX-R TG neurons.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources