Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;322(1):117-22.
doi: 10.1124/jpet.106.119115. Epub 2007 Apr 13.

Role of transforming growth factor beta in rat bladder smooth muscle cell proliferation

Affiliations

Role of transforming growth factor beta in rat bladder smooth muscle cell proliferation

Maurits M Barendrecht et al. J Pharmacol Exp Ther. 2007 Jul.

Abstract

Conditions associated with hypertrophy of the urinary bladder have repeatedly been associated with an increased urinary excretion of transforming growth factor (TGF) beta in both rats and patients. Because TGFbeta can have both growth-promoting and -inhibiting effects, we have studied its effects on cell growth and death in primary cultures of rat bladder smooth muscle cells. TGFbeta1, TGFbeta2, or TGFbeta3 did not cause apoptosis, but all three isoforms inhibited DNA synthesis with similar potency (EC(50) of approximately 0.1 ng/ml) and efficacy. Such inhibition was antagonized by a specific TGFbeta receptor antagonist and independent of the presence of serum. Mitogen-activated protein kinases (MAPKs) are involved in the control of cell growth, and all three TGFbeta isoforms inhibited activation of the extracellular signal-regulated kinase, c-Jun NH(2)-terminal kinase, and p38 MAPK subfamilies. Nevertheless, the inhibitory effects of the TGFbeta isoforms on DNA synthesis were not affected by presence of inhibitors of the three MAPK pathways. TGFbeta did not alter cell size as measured by flow cytometry or mitochondrial activity, an integrated measure of cell size and number. We conclude that our data do not support the hypothesis that TGFbeta is a mediator of rat bladder hypertrophy.

PubMed Disclaimer

LinkOut - more resources