Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Apr 18:8:104.
doi: 10.1186/1471-2164-8-104.

cTFbase: a database for comparative genomics of transcription factors in cyanobacteria

Affiliations
Comparative Study

cTFbase: a database for comparative genomics of transcription factors in cyanobacteria

Jinyu Wu et al. BMC Genomics. .

Abstract

Background: Comprehensive identification and classification of the transcription factors (TFs) in a given genome is an important aspect in understanding transcriptional regulatory networks of a specific organism. Cyanobacteria are an ancient group of gram-negative bacteria with strong variation in genome size ranging from about 1.6 to 9.1 Mb and little is known about their TF repertoires. Therefore, we constructed the cTFbase database to classify and analyze all the putative TFs in cyanobacterial genomes, followed by genome-wide comparative analysis.

Description: In the current release, cTFbase contains 1288 putative TFs identified from 21 fully sequenced cyanobacterial genomes. Through its user-friendly interactive interface, users can employ various criteria to retrieve all TF sequences and their detailed annotation information, including sequence features, domain architecture and sequence similarity against the linked databases. Furthermore, cTFbase provides phylogenetic trees of individual TF family, multiple sequence alignments of the DNA-binding domains and ortholog identification from any selected genomes. Comparative analysis revealed great variability of the TF sequences in cyanobacterial genomes. The high variance on the gene number and domain organization would be related to their diverse biological functions and their adaptation to various environmental conditions.

Conclusion: cTFbase provides a centralized warehouse for comparative analysis of putative TFs in cyanobacterial genomes. The availability of such an extensive database would be of great interest for the community of researchers working on TFs or transcriptional regulatory networks in cyanobacteria. cTFbase can be freely accessible at http://cegwz.com/ and will be continuously updated when the newly sequenced cyanobacterial genomes are available.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flow-chart of method used to identify TFs.
Figure 2
Figure 2
Relationship between the number of TFs and the total number of ORFs in 21 cyanobacterial genomes. The total number of ORFs in each genome was plotted as a function against the number of TFs. Triangle indicates marine cyanobacteria, while square indicates fresh or soil cyanobacteria.
Figure 3
Figure 3
Domain architectures and classification scheme of TFs in the 21 cyanobacterial genomes. The methods classifying TFs into families and identifying the domains can be referred in Section 2. Green rectangles indicate the DBD domains, while red ellipses represent associated domains. The number on the right of the domain organization represents the number of sequences in the specific family.

Similar articles

Cited by

References

    1. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA. Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol. 2004;14:283–291. doi: 10.1016/j.sbi.2004.05.004. - DOI - PubMed
    1. Brune I, Brinkrolf K, Kalinowski J, Puhler A, Tauch A. The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics. 2005;6:86. doi: 10.1186/1471-2164-6-86. - DOI - PMC - PubMed
    1. Minezaki Y, Homma K, Nishikawa K. Genome-wide survey of transcription factors in prokaryotes reveals many bacteria-specific families not found in archaea. DNA Res. 2005;12:269–280. doi: 10.1093/dnares/dsi016. - DOI - PubMed
    1. Perez-Rueda E, Collado-Vides J, Segovia L. Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Comput Biol Chem. 2004;28:341–350. doi: 10.1016/j.compbiolchem.2004.09.004. - DOI - PubMed
    1. Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev. 2005;29:231–262. doi: 10.1016/j.femsre.2004.12.008. - DOI - PubMed

Publication types

Substances

LinkOut - more resources