Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Dec 1;102(5):1180-9.
doi: 10.1002/jcb.21345.

Functional three-dimensional HepG2 aggregate cultures generated from an ultrasound trap: comparison with HepG2 spheroids

Affiliations
Comparative Study

Functional three-dimensional HepG2 aggregate cultures generated from an ultrasound trap: comparison with HepG2 spheroids

Jian Liu et al. J Cell Biochem. .

Abstract

Three-dimensional culture systems are an ideal in vitro model being capable of sustaining cell functionalities in a manner that resembles the in vivo conditions. In the present study, we developed an ultrasound trap-based technique to rapidly produce HepG2 hepatocarcinoma cell aggregates within 30 min. Enhanced junctional F-actin was observed at the points of cell-cell contact throughout the aggregates. HepG2 aggregates prepared by the ultrasound trap can be maintained in culture on a P-HEMA-coated surface for up to 3 weeks. The cells in these aggregates proliferated during the initial 3 days and cell number was consistent during the following maintenance period. Albumin secretion from these HepG2 aggregates recovered after 3 days of aggregate formation and remained relatively stable for the following 12 days. Cytochrome P450-1A1 activity was significantly enhanced after 6 days with maximal enzyme activity observed between 9 and 18 days. In addition, comparison experiments demonstrated that HepG2 aggregates generated by the ultrasound trap had comparable functional characterizations with HepG2 spheroids formed by a traditional gyrotatory-mediated method. Our results suggest that HepG2 aggregate cultures prepared through the ultrasound trap-based technique may provide a novel approach to produce in vitro models for hepatocyte functional studies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources