Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;75(1):136-42.
doi: 10.1002/mrd.20753.

Factors affecting the in vitro action of cumulus cells on the maturing mouse oocytes

Affiliations

Factors affecting the in vitro action of cumulus cells on the maturing mouse oocytes

Li Ge et al. Mol Reprod Dev. 2008 Jan.

Abstract

The removal of cumulus cells (CCs) from oocytes at the germinal vesicle (GV) stage still represents a major limitation in such embryo techniques as GV transfer, somatic cell haploidization, and oocyte cryopreservation. However, no efficient in vitro maturation (IVM) system for CC-denuded oocytes (DOs) has been established in mammalian species. Although follicular cells are considered to play an important role in oocyte maturation, the specific role and mechanisms of action of different cell types are poorly understood. Reports on whether junctional association between CCs and the oocyte is essential for the beneficial effect of CC co-culture on oocyte maturation are in conflict. Our objective was to try to address these issues using the mouse oocyte model. The results indicated that while co-culture with the CC monolayer could only partially restore the developmental potential of DOs without corona cells, it restored the competence of corona-enclosed DOs completely. Culture in medium conditioned with CC monolayer also promoted maturation of DOs. However, co-culture with the monolayer of mural granulosa cells had no effect. The efficiency of CC co-culture was affected by various factors such as density and age of the CCs, the presence of gonadotropin in the maturation medium and the duration for in vivo (IVO) gonadotropin priming. It is concluded that mouse CCs produce a diffusible factor(s) that support DO maturation in a CC-oocyte junctional communication dependent manner. The data will contribute to our understanding the mechanisms by which CCs promote oocyte maturation and to the establishment of an efficient DO IVM system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources