Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 20;502(6):1047-65.
doi: 10.1002/cne.21368.

Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling

Affiliations

Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling

Jeffrey M Trimarchi et al. J Comp Neurol. .

Abstract

During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born they progress from newly specified cells to fully differentiated neurons and glia. In order to define the developmental processes of individual cell types, single cell expression profiling was carried out on developing ganglion and amacrine cells of the murine retina. Individual cells from multiple developmental stages were isolated and profiled on Affymetrix oligonucleotide arrays. Two-color fluorescent in situ hybridization on dissociated retinas was used to verify and extend the microarray results by allowing quantitative measurements of a large number of cells coexpressing two genes. Together, these experiments have yielded an expanded view of the processes underway in developing retinal ganglion and amacrine cells, as well as several hundred new marker genes for these cell types. In addition, this study has allowed for the definition of some of the molecular heterogeneity both between developing ganglion and amacrine cells and among subclasses of each cell type.

PubMed Disclaimer

Publication types

MeSH terms