Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;46(21):3802-24.
doi: 10.1002/anie.200604369.

Deprotonative metalation using ate compounds: synergy, synthesis, and structure building

Affiliations
Review

Deprotonative metalation using ate compounds: synergy, synthesis, and structure building

Robert E Mulvey et al. Angew Chem Int Ed Engl. 2007.

Abstract

Historically, single-metal organometallic species such as organolithium compounds have been the reagents of choice in synthetic organic chemistry for performing deprotonation reactions. Over the past few years, a complementary new class of metalating agents has started to emerge. Owing to a variable central metal (magnesium, zinc, or aluminum), variable ligands (both in their nature and number), and a variable second metallic center (an alkali metal such as lithium or sodium), "ate" complexes are highly versatile bases that exhibit a synergic chemistry which cannot be replicated by the homometallic magnesium, zinc, or aluminum compounds on their own. Deprotonation accomplished by using these organometallic ate complexes has opened up new perspectives in organic chemistry with unprecedented reactivities and sometimes unusual and unpredictable regioselectivities.

PubMed Disclaimer

LinkOut - more resources