Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;6(6):2195-204.
doi: 10.1021/pr0700347. Epub 2007 Apr 20.

Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis

Affiliations

Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis

Michalis Aivaliotis et al. J Proteome Res. 2007 Jun.

Abstract

Characterization of protein N-terminal peptides supports the quality assessment of data derived from genomic sequences (e.g., the correct assignment of start codons) and hints to in vivo N-terminal modifications such as N-terminal acetylation and removal of the initiator methionine. The current work represents the first large-scale identification of N-terminal peptides from prokaryotes, of the two halophilic euryarchaeota Halobacterium salinarum and Natronomonas pharaonis. Two methods were used that specifically allow the characterization of protein N-terminal peptides: combined fractional diagonal chromatography (COFRADIC) and strong cation exchange chromatography (SCX), both known to enrich for N-terminally blocked peptides. In addition to these specific methods, N-terminal peptide identifications were extracted from our previous genome-wide proteomic data. Combining all data, 606 N-terminal peptides from Hbt. salinarum and 328 from Nmn. pharaonis were reliably identified. These results constitute the largest available dataset holding identified and characterized protein N-termini for prokaryotes (archaea and bacteria). They allowed the validation/improvement of start codon assignments as automatic gene finders tend to misassign start codons for GC-rich genomes. In addition, the dataset allowed unravelling N-terminal protein maturation in archaea, showing that 60% of the proteins undergo methionine cleavage and that-in contrast to current knowledge-Nalpha-acetylation is common in the archaeal domain of life with 13-18% of the proteins being Nalpha-acetylated. The protein sets described in this paper are available by FTP and might be used as reference sets to test the performance of new gene finders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources