Epicardial fat: properties, function and relationship to obesity
- PMID: 17444966
- DOI: 10.1111/j.1467-789X.2006.00293.x
Epicardial fat: properties, function and relationship to obesity
Abstract
Epicardial fat is a relatively neglected component of the heart. The purpose of this review was to examine the anatomic and biochemical data on epicardial fat; to examine the relationship of epicardial fat to obesity and to explore the potential role of epicardial fat in the relationship of obesity to coronary atherothrombotic disease. Epicardial fat covers 80% of the heart's surface and constitutes 20% of total heart weight. It is present along the distribution of the coronary arteries, over the right ventricle especially along the right border, anterior surface and at the apex. There is three- to fourfold more epicardial fat associated with the right than the left ventricle. Putative physiologic functions of epicardial fat are based on observational data and include: buffering coronary arteries against the torsion induced by the arterial pulse wave and cardiac contraction, facilitating coronary artery remodelling, regulating fatty acid homeostasis in the coronary microcirculation and providing fatty acids to cardiac muscle as a local energy source in times of high demand. A considerable amount of the data on epicardial fat originates from autopsy series that have the inherent problem that conditions leading to death may have altered body composition and adiposity. With this caveat, data indicate that epicardial fat mass increases age until age 20-40 years but thereafter the amount of epicardial fat is not dependent on age. The amount of epicardial fat correlates with heart weight but the presence of myocardial ischemia and hypertrophy does not alter the ratio of epicardial fat to cardiac muscle mass. A number of properties differentiate epicardial fat from other fat depots specifically its smaller adipocytes size; different fatty acid composition, high protein content; high rates of fatty acid incorporation, fatty acid synthesis, insulin-induced lipogenesis or fatty acid breakdown; low rates of glucose utilization, low expression (mRNA) of lipoprotein lipase, stearoyl-CoA desaturase and acetyl-CoA carboxylase-alpha, and slow regression during weight loss. There is a significant direct relationship between the amount of epicardial fat and general body adiposity. Clinical imaging studies have demonstrated a strong direct correlation between epicardial fat and abdominal visceral adiposity. Several lines of evidence support a role for epicardial fat in the pathogenesis of coronary artery disease, namely the close anatomic relationship between epicardial fat and coronary arteries; the positive correlation between the amount of epicardial fat and the presence of coronary atherosclerosis and the ability of adipose tissue to secrete hormones and cytokines that modulate coronary artery atherothrombosis. Thus, epicardial fat maybe an important factor responsible for cardiovascular disease in obesity.
Similar articles
-
Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy.Obesity (Silver Spring). 2008 Nov;16(11):2424-30. doi: 10.1038/oby.2008.379. Epub 2008 Aug 14. Obesity (Silver Spring). 2008. PMID: 18719675
-
[Epicardial fatty tissue of the right ventricle--morphology, morphometry and functional significance].Pneumologie. 1989 Sep;43(9):490-9. Pneumologie. 1989. PMID: 2813303 German.
-
The double role of epicardial adipose tissue as pro- and anti-inflammatory organ.Horm Metab Res. 2008 Jul;40(7):442-5. doi: 10.1055/s-2008-1062724. Epub 2008 Mar 13. Horm Metab Res. 2008. PMID: 18401833
-
[Epicardial adipose tissue and its role in cardiac physiology and disease].Postepy Hig Med Dosw (Online). 2013 Jun 20;67:584-93. doi: 10.5604/17322693.1053908. Postepy Hig Med Dosw (Online). 2013. PMID: 23799402 Review. Polish.
-
Epicardial fat: from the biomolecular aspects to the clinical practice.Int J Biochem Cell Biol. 2011 Dec;43(12):1651-4. doi: 10.1016/j.biocel.2011.09.006. Epub 2011 Sep 28. Int J Biochem Cell Biol. 2011. PMID: 21967993 Review.
Cited by
-
Epimuscular Fat in the Human Rotator Cuff Is a Novel Beige Depot.Stem Cells Transl Med. 2015 Jul;4(7):764-74. doi: 10.5966/sctm.2014-0287. Epub 2015 May 21. Stem Cells Transl Med. 2015. PMID: 25999520 Free PMC article.
-
Influence of exercise and perivascular adipose tissue on coronary artery vasomotor function in a familial hypercholesterolemic porcine atherosclerosis model.J Appl Physiol (1985). 2010 Mar;108(3):490-7. doi: 10.1152/japplphysiol.00999.2009. Epub 2009 Dec 3. J Appl Physiol (1985). 2010. PMID: 19959766 Free PMC article.
-
Biomaterials to Mimic and Heal Connective Tissues.Adv Mater. 2019 May;31(19):e1806695. doi: 10.1002/adma.201806695. Epub 2019 Mar 25. Adv Mater. 2019. PMID: 30908806 Free PMC article. Review.
-
Clinical importance of epicardial adipose tissue.Arch Med Sci. 2017 Jun;13(4):864-874. doi: 10.5114/aoms.2016.63259. Epub 2016 Oct 26. Arch Med Sci. 2017. PMID: 28721155 Free PMC article.
-
Bisphenol A alters autonomic tone and extracellular matrix structure and induces sex-specific effects on cardiovascular function in male and female CD-1 mice.Endocrinology. 2015 Mar;156(3):882-95. doi: 10.1210/en.2014-1847. Epub 2015 Jan 16. Endocrinology. 2015. PMID: 25594700 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous