Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;25(8):2249-59.
doi: 10.1111/j.1460-9568.2007.05511.x.

Optical glutamate sensor for spatiotemporal analysis of synaptic transmission

Affiliations

Optical glutamate sensor for spatiotemporal analysis of synaptic transmission

Shigeyuki Namiki et al. Eur J Neurosci. 2007 Apr.

Abstract

Imaging neurotransmission is expected to greatly improve our understanding of the mechanisms and regulations of synaptic transmission. Aiming at imaging glutamate, a major excitatory neurotransmitter in the CNS, we developed a novel optical glutamate probe, which consists of a ligand-binding domain of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor glutamate receptor GluR2 subunit and a small molecule fluorescent dye. We expected that such fluorescent conjugates might report the microenvironmental changes upon protein conformational changes elicited by glutamate binding. After more than 100 conjugates were tested, we finally obtained a conjugate named E (glutamate) optical sensor (EOS), which showed maximally 37% change in fluorescence intensity upon binding of glutamate with a dissociation constant of 148 nm. By immobilizing EOS on the cell surface of hippocampal neuronal culture preparations, we pursued in situ spatial mapping of synaptically released glutamate following presynaptic firing. Results showed that a single firing was sufficient to obtain high-resolution images of glutamate release, indicating the remarkable sensitivity of this technique. Furthermore, we monitored the time course of changes in presynaptic activity induced by phorbol ester and found heterogeneity in presynaptic modulation. These results indicate that EOS can be generally applicable to evaluation of presynaptic modulation and plasticity. This EOS-based glutamate imaging method is useful to address numerous fundamental issues about glutamatergic neurotransmission in the CNS.

PubMed Disclaimer

Publication types

LinkOut - more resources