Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;174(3):483-498.
doi: 10.1111/j.1469-8137.2007.02060.x.

Pollen wall development in flowering plants

Affiliations
Free article
Review

Pollen wall development in flowering plants

Stephen Blackmore et al. New Phytol. 2007.
Free article

Abstract

The outer pollen wall, or exine, is more structurally complex than any other plant cell wall, comprising several distinct layers, each with its own organizational pattern. Since elucidation of the basic events of pollen wall ontogeny using electron microscopy in the 1970s, knowledge of their developmental genetics has increased enormously. However, self-assembly processes that are not under direct genetic control also play an important role in pollen wall patterning. This review integrates ultrastructural and developmental findings with recent models for self-assembly in an attempt to understand the origins of the morphological complexity and diversity that underpin the science of palynology.

PubMed Disclaimer

References

    1. Ahlers F, Bubert H, Steuernagel S, Wiermann R. 2000. The nature of oxygen in sporopollenin from the pollen of Typha angustifolia L. Zeitschrift für Naturforschung C 55: 129-136.
    1. APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399-436.
    1. Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K. 2003. A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Molecular Biology 53: 107-116.
    1. Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K. 2005. The HKM gene, which is identical to the MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sexual Plant Reproduction 18: 1-7.
    1. Barnes SH, Blackmore S. 1986. Some functional features during pollen development. In: Blackmore S, Ferguson IK, eds. Pollen and spores: form and function. London, UK: Academic Press, 71-80.

LinkOut - more resources