Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;40(4):632-42.
doi: 10.1038/ki.1991.255.

Early renal medullary hypoxic injury from radiocontrast and indomethacin

Affiliations
Free article

Early renal medullary hypoxic injury from radiocontrast and indomethacin

S N Heyman et al. Kidney Int. 1991 Oct.
Free article

Abstract

We evaluated the acute changes in cortical and outer medullary oxygen tension and the alterations in renal function and morphology within the first 90 minutes after the administration of indomethacin and iothalamate to anesthetized Sprague-Dawley rats. Both agents were found to produce marked and protracted outer medullary hypoxia averaging 12 +/- 4 and 9 +/- 2 mm Hg, respectively (mean +/- SE). Given together to salt depleted uninephrectomized rats they produced an early hypoxic injury localized selectively in the outer medulla. This lesion progressed from 3 +/- 1% of medullary thick ascending limbs (mTALs) at 15 minutes to 22 +/- 7% at 24 hours. Condensed "dark" cells were observed at 15 minutes, probably representing a type of early injury. Residual red cell mass, quantified in the outer medullary vasculature of perfusion-fixed kidneys and presumably reflecting stasis, was substantially increased in iothalamate treated rats. Red cell mass in the interbundle zone correlated with mTAL necrosis. Taken together, these results show an early period of medullary hypoxia, accompanied by a selective injury to mTALs in the central interbundle zone with apparent stasis. These findings contrast sharply with the ischemia-reflow pattern of renal damage and emphasize the important role of medullary hypoxia in the genesis of acute renal failure in this model.

PubMed Disclaimer

Publication types

LinkOut - more resources