Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 30;60(3-4):177-81.

Effect of local (intracerebral and intracerebroventricular) administration of tyrosine hydroxylase inhibitor on the neuroendocrine dopaminergic neurons and prolactin release

Affiliations
  • PMID: 17451064

Effect of local (intracerebral and intracerebroventricular) administration of tyrosine hydroxylase inhibitor on the neuroendocrine dopaminergic neurons and prolactin release

Ibolya Bodnár et al. Ideggyogy Sz. .

Abstract

Background and purpose: Hypothalamic dopamine (DA), the physiological regulator of pituitary prolactin (PRL) secretion, is synthesized in the neuroendocrine dopaminergic neurons that projects to the median eminence and the neurointermediate lobe of the pituitary gland. The rate-limiting step of DA biosynthesis is catalyzed by the phosphorylated, therefore activated, tyrosine hydroxylase (TH) that produces L-3,4-dihydroxy-phenylalanine from tyrosine. The aims of our present study were to investigate 1. the effect of local inhibition of the DA biosynthesis in the hypothalamic arcuate nucleus on PRL release, and to get 2. some information whether the phosphorylated TH is the target of enzyme inhibition or not.

Methods: A TH inhibitor, alpha-methyl-p-tyrosine was injected either intracerebro-ventricularly or into the arcuate nucleus of freely moving rats and plasma PRL concentration was measured. Immunohistochemistry, using antibodies raised against to native as well as phosphorylated TH were used to compare their distributions in the arcuate nucleus-median eminence region.

Results: Intracerebro-ventricular administration of alpha-methyl-p-tyrosine has no effect, unlike the intra-arcuatus injection of enzyme inhibitor resulted in a slight but significant elevation in plasma PRL. Parallel with this, the level of DA and DOPAC were reduced in the neurointermediate lobe while no change in norepinephrine concentration can be detected indicating a reduced biosynthesis of dopamine following TH inhibition. On the other hand, systematic application of the alpha-methyl-p-tyrosine that inhibits TH activity located in DA terminals of the median eminence and the neurointermediate lobe, resulted in the most significant elevation of PRL.

Conclusion: Our results suggest that alpha-methyl-p-tyrosine administered close to the neuroendocrine dopaminergic neurons was able to inhibit only a small proportion of the TH. Moreover, it also indicate that the majority of the activated TH can be found in the axon terminals of dopaminergic neurons, therefore, the DA released into the pituitary portal circulation is synthesized at this site.

PubMed Disclaimer

Publication types

MeSH terms