Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;72(1):197-207.
doi: 10.1124/mol.107.034702. Epub 2007 Apr 23.

Structure-activity relationship of 1,4-dihydropyridines as potentiators of the cystic fibrosis transmembrane conductance regulator chloride channel

Affiliations

Structure-activity relationship of 1,4-dihydropyridines as potentiators of the cystic fibrosis transmembrane conductance regulator chloride channel

Nicoletta Pedemonte et al. Mol Pharmacol. 2007 Jul.

Abstract

Mutations occurring in the CFTR gene, encoding for the cystic fibrosis transmembrane conductance regulator chloride channel, cause cystic fibrosis (CF). Mutations belonging to class II, such as DeltaPhe508, give rise to a protein with both a defective maturation and altered channel gating. Mutations belonging to class III, such as G551D and G1349D, cause only a gating defect. We have previously identified antihypertensive 1,4-dihydropyridines (DHPs), a class of drugs that block voltage-dependent Ca(2+) channels, as effective potentiators of CFTR gating, able to correct the defective activity of CFTR mutants (Mol Pharmacol 68:1736-1746, 2005). However, optimization of potency for CFTR versus Ca(2+) channels is required to design selective compounds for CFTR pharmacotherapy. In the present study, we have established DHP structure-activity relationship for both CFTR potentiation and Ca(2+) channel inhibition using cell-based assays for both types of channels. A panel of 333 felodipine analogs was studied to understand the effect of various substitutions and modifications in the DHP scaffold. Our results show that alkyl substitutions at the para position of the 4-phenyl ring lead to compounds with very low activity on Ca(2+) channels and strong effect as potentiators on the DeltaPhe508, G551D, and G1349D CFTR mutants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources