Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;329(2):301-11.
doi: 10.1007/s00441-007-0417-3. Epub 2007 Apr 24.

Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure

Affiliations

Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure

Andrea T Badillo et al. Cell Tissue Res. 2007 Aug.

Abstract

Diabetes impairs multiple aspects of the wound-healing response. Delayed wound healing continues to be a significant healthcare problem for which effective therapies are lacking. We have hypothesized that local delivery of mesenchymal stromal cells (MSC) at a wound might correct many of the wound-healing impairments seen in diabetic lesions. We treated excisional wounds of genetically diabetic (Db-/Db-) mice and heterozygous controls with either MSC, CD45(+) cells, or vehicle. At 7 days, treatment with MSC resulted in a decrease in the epithelial gap from 3.2 +/- 0.5 mm in vehicle-treated wounds to 1.3 +/- 0.4 mm in MSC-treated wounds and an increase in granulation tissue from 0.8 +/- 0.3 mm(2) to 2.4 +/- 0.6 mm(2), respectively (mean +/- SD, P < 0.04). MSC-treated wounds also displayed a higher density of CD31(+) vessels and exhibited increases in the production of mRNA for epidermal growth factor, transforming growth factor beta 1, vascular endothelial growth factor, and stromal-derived growth factor 1-alpha. MSC also demonstrated greater contractile ability than fibroblast controls in a collagen gel contraction assay. The effects of locally applied MSC are thus sufficient to improve healing in diabetic mice. Possible mechanisms of this effect include augmented local growth-factor production, improved neovascularization, enhanced cellular recruitment to wounds, and improved wound contraction.

PubMed Disclaimer

MeSH terms