A review of 'green' strategies to prevent or mitigate microbiologically influenced corrosion
- PMID: 17453733
- DOI: 10.1080/08927010601151782
A review of 'green' strategies to prevent or mitigate microbiologically influenced corrosion
Abstract
Two approaches to control microbiologically influenced corrosion (MIC) have been developed that do not require the use of biocides. These strategies include the following: i) use of biofilms to inhibit or prevent corrosion, and ii) manipulation (removal or addition) of an electron acceptor, (e.g. oxygen, sulphate or nitrate) to influence the microbial population. In both approaches the composition of the microbial community is affected by small perturbations in the environment (e.g. temperature, nutrient concentration and flow) and the response of microorganisms cannot be predicted with certainty. The following sections will review the literature on the effectiveness of these environmentally friendly, "green," strategies for controlling MIC.
Similar articles
-
Microbial corrosion of stainless steel.Microbiologia. 1992 Nov;8(2):63-75. Microbiologia. 1992. PMID: 1492953 Review.
-
Nutrient Level Determines Biofilm Characteristics and Subsequent Impact on Microbial Corrosion and Biocide Effectiveness.Appl Environ Microbiol. 2020 Mar 18;86(7):e02885-19. doi: 10.1128/AEM.02885-19. Print 2020 Mar 18. Appl Environ Microbiol. 2020. PMID: 31980429 Free PMC article.
-
Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.Colloids Surf B Biointerfaces. 2007 Sep 1;59(1):87-99. doi: 10.1016/j.colsurfb.2007.04.020. Epub 2007 May 3. Colloids Surf B Biointerfaces. 2007. PMID: 17582747
-
Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view.Appl Microbiol Biotechnol. 2020 Jan;104(2):515-525. doi: 10.1007/s00253-019-10184-8. Epub 2019 Dec 6. Appl Microbiol Biotechnol. 2020. PMID: 31807887 Review.
-
Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli.Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:228-34. doi: 10.1016/j.msec.2014.12.004. Epub 2014 Dec 4. Mater Sci Eng C Mater Biol Appl. 2015. PMID: 25579918
Cited by
-
The influence of the marine Bacillus cereus over carbon steel, stainless corrosion, and copper coupons.Arch Microbiol. 2021 Dec 6;204(1):9. doi: 10.1007/s00203-021-02607-w. Arch Microbiol. 2021. PMID: 34873663
-
Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields.Appl Environ Microbiol. 2008 May;74(9):2841-51. doi: 10.1128/AEM.02027-07. Epub 2008 Mar 14. Appl Environ Microbiol. 2008. PMID: 18344353 Free PMC article.
-
Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system.BMC Microbiol. 2012 Jun 22;12:122. doi: 10.1186/1471-2180-12-122. BMC Microbiol. 2012. PMID: 22727216 Free PMC article.
-
Green biocide for mitigating sulfate-reducing bacteria influenced microbial corrosion.3 Biotech. 2018 Dec;8(12):495. doi: 10.1007/s13205-018-1513-7. Epub 2018 Nov 21. 3 Biotech. 2018. PMID: 30498668 Free PMC article.
-
The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems.J Ind Microbiol Biotechnol. 2008 Dec;35(12):1625-36. doi: 10.1007/s10295-008-0406-x. Epub 2008 Aug 28. J Ind Microbiol Biotechnol. 2008. PMID: 18752014
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources