Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;13(19):5338-46.
doi: 10.1002/chem.200700069.

Generation, characterization, and electrochemical behavior of the palladium-hydride cluster [Pd3(dppm)3(mu3-CO)(mu3-H)]+ (dppm=Bis(diphenylphosphinomethane)

Affiliations

Generation, characterization, and electrochemical behavior of the palladium-hydride cluster [Pd3(dppm)3(mu3-CO)(mu3-H)]+ (dppm=Bis(diphenylphosphinomethane)

Cyril Cugnet et al. Chemistry. 2007.

Abstract

Addition of formate on the dicationic cluster [Pd(3)(dppm)(3)(mu(3)-CO)](2+) (dppm=bis(diphenylphosphinomethane) affords quantitatively the hydride cluster [Pd(3)(dppm)(3)(mu(3)-CO)(mu(3)-H)](+). This new palladium-hydride cluster has been characterised by (1)H NMR, (31)P NMR and UV/Vis spectroscopy and MALDI-TOF mass spectrometry. The unambiguous identification of the capping hydride was made from (2)H NMR spectroscopy by using DCO(2) (-) as starting material. The mechanism of the hydride complex formation was investigated by UV/Vis stopped-flow methods. The kinetic data are consistent with a two-step process involving: 1) host-guest interactions between HCO(2) (-) and [Pd(3)(dppm)(3)(mu(3)-CO)](2+) and 2) a reductive elimination of CO(2). Two alternatives routes to the hydride complex were also examined : 1) hydride transfer from NaBH(4) to [Pd(3)(dppm)(3)(mu(3)-CO)](2+) and 2) electrochemical reduction of [Pd(3)(dppm)(3)(mu(3)-CO)](2+) to [Pd(3)(dppm)(3)(mu(3)-CO)](0) followed by an addition of one equivalent of H(+). Based on cyclic voltammetry, evidence for a dual mechanism (ECE and EEC; E=electrochemical (one-electron transfer), C=chemical (hydride dissociation)) for the two-electron reduction of [Pd(3)(dppm)(3)(mu(3)-CO)(mu(3)-H)](+) to [Pd(3)(dppm)(3)(mu(3)-CO)](0) is provided, corroborated by digital simulation of the experimental results. Geometry optimisations of the [Pd(3)(H(2)PCH(2)PH(2))(3)(mu(3)-CO)(mu(3)-H)](n) model clusters were performed by using DFT at the B3 LYP level. Upon one-electron reductions, the Pd--Pd distance increases from a formal single bond (n=+1), to partially bonding (n=0), to weak metal-metal interactions (n=-1), while the Pd--H bond length remains relatively the same.

PubMed Disclaimer

LinkOut - more resources