Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging
- PMID: 17455199
- PMCID: PMC6870960
- DOI: 10.1002/hbm.20395
Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging
Abstract
Estimation of noise-induced variability in diffusion tensor imaging (DTI) is needed to objectively follow disease progression in therapeutic monitoring and to provide consistent readouts of pathophysiology. The noise variability of nonlinear quantities of the diffusion tensor (e.g., fractional anisotropy, fiber orientation, etc.) have been quantified using the bootstrap, in which the data are resampled from the experimental averages, yet this approach is only applicable to DTI scans that contain multiple averages from the same sampling direction. It has been shown that DTI acquisitions with a modest to large number of directions, in which each direction is only sampled once, outperform the multiple averages approach. These acquisitions resist the traditional (regular) bootstrap analysis though. In contrast to the regular bootstrap, the wild bootstrap method can be applied to such protocols in which there is only one observation per direction. Here, we compare and contrast the wild bootstrap with the regular bootstrap using Monte Carlo numerical simulations for a number of diffusion scenarios. The regular and wild bootstrap methods are applied to human DTI data and empirical distributions are obtained for fractional anisotropy and the diffusion tensor eigensystem. Spatial maps of the estimated variability in the diffusion tensor principal eigenvector are provided. The wild bootstrap method can provide empirical distributions for tensor-derived quantities, such as fractional anisotropy and principal eigenvector direction, even when the exact distributions are not easily derived.
Figures







Similar articles
-
Evaluation of measurement uncertainties in human diffusion tensor imaging (DTI)-derived parameters and optimization of clinical DTI protocols with a wild bootstrap analysis.J Magn Reson Imaging. 2009 Feb;29(2):422-35. doi: 10.1002/jmri.21647. J Magn Reson Imaging. 2009. PMID: 19161198
-
An optimized wild bootstrap method for evaluation of measurement uncertainties of DTI-derived parameters in human brain.Neuroimage. 2008 Apr 15;40(3):1144-56. doi: 10.1016/j.neuroimage.2008.01.016. Epub 2008 Jan 26. Neuroimage. 2008. PMID: 18302985
-
A note on the validity of statistical bootstrapping for estimating the uncertainty of tensor parameters in diffusion tensor images.IEEE Trans Med Imaging. 2008 Oct;27(10):1506-14. doi: 10.1109/TMI.2008.926069. IEEE Trans Med Imaging. 2008. PMID: 18815102 Free PMC article.
-
Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.Neuroimage. 2006 Nov 1;33(2):531-41. doi: 10.1016/j.neuroimage.2006.07.001. Epub 2006 Aug 28. Neuroimage. 2006. PMID: 16938472
-
Principal diffusion direction in peritumoral fiber tracts: Color map patterns and directional statistics.Ann N Y Acad Sci. 2005 Dec;1064:193-201. doi: 10.1196/annals.1340.037. Ann N Y Acad Sci. 2005. PMID: 16394157 Review.
Cited by
-
Prospective acceleration of diffusion tensor imaging with compressed sensing using adaptive dictionaries.Magn Reson Med. 2016 Jul;76(1):248-58. doi: 10.1002/mrm.25876. Epub 2015 Aug 24. Magn Reson Med. 2016. PMID: 26302363 Free PMC article.
-
Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion.Magn Reson Imaging. 2012 Feb;30(2):171-80. doi: 10.1016/j.mri.2011.10.001. Epub 2011 Nov 12. Magn Reson Imaging. 2012. PMID: 22079073 Free PMC article.
-
Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI.PLoS One. 2012;7(11):e48232. doi: 10.1371/journal.pone.0048232. Epub 2012 Nov 26. PLoS One. 2012. PMID: 23189128 Free PMC article.
-
Assessment of bias for MRI diffusion tensor imaging using SIMEX.Med Image Comput Comput Assist Interv. 2011;14(Pt 2):107-15. doi: 10.1007/978-3-642-23629-7_14. Med Image Comput Comput Assist Interv. 2011. PMID: 21995019 Free PMC article.
-
FATCAT: (an efficient) Functional and Tractographic Connectivity Analysis Toolbox.Brain Connect. 2013;3(5):523-35. doi: 10.1089/brain.2013.0154. Brain Connect. 2013. PMID: 23980912 Free PMC article.
References
-
- Anderson AW( 2001): Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med 46: 1174–1188. - PubMed
-
- Basford KE, Greenway DR, McLachlan GJ, Peel D( 1997): Standard errors of fitted means under normal mixture models. Comput Stat 12: 1–17.
-
- Basser PJ, Mattiello J, LeBihan D( 1994): Estimation of the effective self‐diffusion tensor from the NMR spin echo. J Magn Reson 103: 247–254. - PubMed
-
- Batchelor PG, Atkinson D, Hill DLG, Calamante F, Connelly A( 2003): Anisotropic noise propagation in diffusion tensor MRI sampling schemes. Magn Reson Med 49: 1143–1151. - PubMed
-
- Behrens TEJ, Woolrich MW, Jenkinson M, Johansen‐Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM( 2003): Characterization and propogation of uncertainty in diffusion‐weighted MR imaging. Magn Reson Med 50: 1077–1088. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources