Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;14(14):1102-10.
doi: 10.1038/sj.gt.3302963. Epub 2007 Apr 26.

Reversal of streptozotocin-induced diabetes in rats by gene therapy with betacellulin and pancreatic duodenal homeobox-1

Affiliations

Reversal of streptozotocin-induced diabetes in rats by gene therapy with betacellulin and pancreatic duodenal homeobox-1

S Chen et al. Gene Ther. 2007 Jul.

Abstract

Ultrasound-targeted microbubble destruction (UTMD) was used to direct betacellulin (BTC) and pancreatic duodenal homeobox-1 (PDX1) to rat pancreas 48 h after islet destruction by streptozotocin (STZ). Sprague-Dawley rats were rendered diabetic by STZ injection. Controls included normal rats, STZ only without UTMD, and UTMD with DsRed reporter gene. Blood glucose increased dramatically in all rats 48 h after STZ, and continued to rise after UTMD with BTC alone. Blood glucose declined from day 3 to day 10 after UTMD with PDX1, but remained elevated (261+/-8 mg/dl). However, in rats treated with both BTC and PDX1, blood glucose remained below 200 mg/dl throughout day 10. This was accompanied by normalization of blood insulin and C-peptide. Histology demonstrated islet-like clusters of glucagon-staining cells in the rats treated with BTC and PDX1, but these clusters disappeared by 30 days after UTMD treatment. Although regeneration of insulin-producing islets was not seen, diabetes was reversed for up to 15 days after a single UTMD treatment by ectopic insulin production by pancreatic acinar cells. These cells co-expressed amylase and insulin and demonstrated several beta-cell markers by reverse transcription-PCR. Gene therapy by UTMD can reverse diabetes in vivo in adult rats by restoring pancreatic insulin production.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms