Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;243(3):727-35.
doi: 10.1148/radiol.2433060433. Epub 2007 Apr 26.

Functional MR imaging during hypercapnia and hyperoxia: noninvasive tool for monitoring changes in liver perfusion and hemodynamics in a rat model

Affiliations

Functional MR imaging during hypercapnia and hyperoxia: noninvasive tool for monitoring changes in liver perfusion and hemodynamics in a rat model

Hila Barash et al. Radiology. 2007 Jun.

Abstract

Purpose: To prospectively assess functional magnetic resonance (MR) imaging during hypercapnia and hyperoxia for monitoring changes in liver perfusion and hemodynamics in rats.

Materials and methods: All experiments were performed with approval of an animal care and use committee. Functional T2*-weighted gradient-echo MR images of the rat liver were acquired during hyperoxia and graded hypercapnia (n=24). Additional images were acquired during portal vein ligation (n=4), induced hypovolemia (n=5), and 70% hepatectomy (n=5). Hypercapnic effects were confirmed with Doppler ultrasonography and with gadopentetate dimeglumine. Differences between groups were analyzed by using Wilcoxon rank sum test, except for the graded hypercapnia, for which one-way analysis of variance was used.

Results: Liver signal intensity (SI) increased due to hyperoxia; the percentage change in SI was seven times greater than that in muscle tissue; this reflects higher vascularity of the liver. Liver SI decreased due to hypercapnia; the percentage change in SI was negative in the liver but positive in the muscle (P<.001). Induced hypovolemia resulted in considerable decreases in functional MR imaging response; this reflects lower liver perfusion. Clinical applicability of the functional MR imaging method was proved by monitoring changes in liver perfusion that resulted from liver resection.

Conclusion: In the liver, the magnitude of the percentage change in SI induced by hypercapnia and hyperoxia reflects changes in total blood volume; whereas percentage change in SI values induced by hypercapnia from a negative to a positive value reflects relative changes in portal-to-arterial blood flow ratio.

PubMed Disclaimer

Publication types

LinkOut - more resources