Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan-Feb;13(1):49-55.
doi: 10.1097/PPO.0b013e31803c72fe.

Targeting aberrant chromatin structure in colorectal carcinomas

Affiliations
Review

Targeting aberrant chromatin structure in colorectal carcinomas

Kazuo Konishi et al. Cancer J. 2007 Jan-Feb.

Abstract

Epigenetic processes such as DNA methylation and histone modifications are now recognized as critical events for regulation of gene expression in mammalian cells and affect gene function without a change in coding sequence. Neoplastic cells often show profound epigenetic alterations that contribute to tumorigenesis by altering expression of critical genes. In colorectal tumorigenesis, detailed analysis led to a hypothesis on a critical role for epigenetic changes in age-related cancer susceptibility and separately identified a distinct phenotype termed the CpG island methylator phenotype. CpG island methylator phenotype-positive colorectal cancers have significant associations with female sex, older age, proximal location, mucinous histology, KRAS and BRAF mutations, wild-type p53, and microsatellite instability. Histone modifications that affect chromatin structures are also closely implicated in tumor suppressor gene inactivation and DNA methylation and histone modifications seem to form reinforcing networks for stable gene silencing. Much of the excitement in this field relates to the possibility of therapeutic reversal of epigenetic changes by chromatin-modifying drugs. In CpG island methylator phenotype-positive colorectal cancers, DNA methylation inhibitors restore key silenced pathways in vivo (eg, mismatch repair defects), and hypomethylation can largely abolish tumorigenesis in a mouse model. Drugs that inhibit DNA methylation and histone deacetylation are in use in the clinic and should be tested in colorectal malignancy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances