Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 8;146(4):1662-76.
doi: 10.1016/j.neuroscience.2007.03.030. Epub 2007 Apr 30.

Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system

Affiliations

Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system

J R Homberg et al. Neuroscience. .

Abstract

Serotonergic signaling is involved in many neurobiological processes and disturbed 5-HT homeostasis is implicated in a variety of psychiatric and addictive disorders. Here, we describe the functional characterization of the serotonin transporter (SERT) knockout rat model, that is generated by N-ethyl-N-nitrosurea (ENU)-driven target-selected mutagenesis. Biochemical characterization revealed that SERT mRNA and functional protein are completely absent in homozygous knockout (SERT-/-) rats, and that there is a gene dose-dependent reduction in the expression and function of the SERT in heterozygous knockout rats. As a result, 5-HT homeostasis was found to be severely affected in SERT-/- rats: 5-HT tissue levels and depolarization-induced 5-HT release were significantly reduced, and basal extracellular 5-HT levels in the hippocampus were ninefold increased. Interestingly, we found no compensatory changes in in vitro activity of tryptophan hydroxylase and monoamine oxidase, the primary enzymes involved in 5-HT synthesis and degradation, respectively. Similarly, no major adaptations in non-serotonergic systems were found, as determined by dopamine and noradrenaline transporter binding, monoamine tissue levels, and depolarization-induced release of dopamine, noradrenaline, glutamate and GABA. In conclusion, neurochemical changes in the SERT knockout rat are primarily limited to the serotonergic system, making this novel rat model potentially very useful for studying the behavioral and neurobiological consequences of disturbed 5-HT homeostasis.

PubMed Disclaimer

Publication types

MeSH terms