Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;21(1):201-7.
doi: 10.1016/j.pupt.2007.02.005. Epub 2007 Mar 12.

Efficiency of lornoxicam in lung and trachea injury caused by peroxynitrite

Affiliations

Efficiency of lornoxicam in lung and trachea injury caused by peroxynitrite

Erhan Ayan et al. Pulm Pharmacol Ther. 2008.

Abstract

Peroxynitrite is involved in the pathogenesis of pulmonary diseases such as asthma, occupational pulmonary diseases and acute respiratory distress syndrome (ARDS) due to excessive production of nitric oxide or superoxide or both. Lornoxicam, a new oxicam derivative, is a potent anti-inflammatory agent. In this study, we evaluated the role of lornoxicam in a peroxynitrite-induced pulmonary and tracheal injury model by measuring myeloperoxidase (MPO) activity, malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) levels in lung tissue and bronco-alveolar lavage fluid. The study protocol was based on three experimental groups as treatment (T), control (C) and peroxynitrite (P). Each group was subdivided into three subgroups as 2nd, 24th and 48th hour groups. P and T groups were injected intratracheal peroxynitrite. The T group received intraperitoneal lornoxicam before and 24h after peroxynitrite installation. Tissue and serum MDA, MPO values and tissue 3-NT value of the treatment and control groups were found significantly lower than the peroxynitrite group at the 2nd, 24th and 48th hours (p<0.05). Similarly, values obtained from bronco-alveolar lavage fluid examination in the control and treatment groups were significantly less than those in the peroxynitrite group (p<0.01). Therefore, Lornoxicam has been found to be effective in attenuating peroxynitrite induced pulmonary and tracheal injury in rats.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms