Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 May;133(5):1171-8.
doi: 10.1016/j.jtcvs.2006.12.058.

Warm nondepolarizing adenosine and lidocaine cardioplegia: continuous versus intermittent delivery

Affiliations
Free article
Comparative Study

Warm nondepolarizing adenosine and lidocaine cardioplegia: continuous versus intermittent delivery

Kathryn L Sloots et al. J Thorac Cardiovasc Surg. 2007 May.
Free article

Abstract

Objective: Continuous infusion of warm to normothermic cardioplegia may limit the surgeon's visual field, increase coronary vascular resistance, and lead to potassium-exacerbated ischemia-reperfusion damage. Our aim was to examine the versatility of a new normokalemic, nondepolarizing adenosine-lidocaine cardioplegia during continuous or intermittent infusion at 33 degrees C and compare it with lidocaine cardioplegia.

Methods: Isolated, perfused rat hearts (n = 6 each group) were arrested at 33 degrees C for 40 or 60 minutes with 200 microm of adenosine and 500 microm of lidocaine in Krebs-Henseleit buffer (10 mmol/L glucose, pH 7.6-7.7 at 37 degrees C) or 500 microm of lidocaine in Krebs-Henseleit buffer for 60 minutes delivered at 60 mm Hg.

Results: Times to arrest were 7 to 10 seconds for the adenosine-lidocaine groups and 102 seconds for the lidocaine group (P < .05). Total cardioplegia volumes for intermittent (2 minutes every 18 minutes) and continuous deliveries were 122 to 159 mL and 699 to 922 mL for the 40- and 60-minute adenosine-lidocaine arrest protocols, respectively, and 136 mL for the 60-minute intermittent lidocaine group. In the last 2 minutes of the 40- and 60-minute arrest protocols, the coronary vascular resistance was not significantly different for the hearts arrested with adenosine and lidocaine (0.27-0.32 megadyne/sec/cm(-5)). Significantly higher coronary vascular resistance was found in the lidocaine cardioplegia group (0.38 megadyne/sec/cm(-5)). No significant differences were found between the continuous or intermittent adenosine-lidocaine delivery protocols. Hearts arrested with adenosine and lidocaine recovered 88% to 89% of aortic flow and 109% of coronary flow at 60 minutes of reperfusion after 40-minute arrest, and 77% to 86% of aortic flow and 98% to 109% of coronary flow at 60 minutes of reperfusion after 60-minute arrest. Lidocaine cardioplegia led to significantly lower aortic and coronary flows after 60-minute arrest compared with the intermittent adenosine-lidocaine group.

Conclusions: We conclude that adenosine-lidocaine cardioplegia can be delivered intermittently or continuously with similar functional recoveries after a 40- or 60-minute arrest at 33 degrees C. Hearts receiving lidocaine cardioplegia took a significantly longer time to arrest, showed higher coronary vascular resistance, and achieved lower functional recovery than the 60-minute adenosine-lidocaine cardioplegia groups. Intermittent or continuous delivery of adenosine-lidocaine cardioplegia may offer an alternative to current surgical hyperkalemic cardioplegia at warm to normothermic temperatures.

PubMed Disclaimer

Publication types

LinkOut - more resources