Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;25(5):1307-16.
doi: 10.1634/stemcells.2006-0561.

Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration

Affiliations

Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration

Jae-Sung Bae et al. Stem Cells. 2007 May.

Abstract

Recent studies have shown that bone marrow-derived MSCs (BM-MSCs) improve neurological deficits when transplanted into animal models of neurological disorders. However, the precise mechanism by which this occurs remains unknown. Herein we demonstrate that BM-MSCs are able to promote neuronal networks with functional synaptic transmission after transplantation into Niemann-Pick disease type C (NP-C) mouse cerebellum. To address the mechanism by which this occurs, we used gene microarray, whole-cell patch-clamp recordings, and immunohistochemistry to evaluate expression of neurotransmitter receptors on Purkinje neurons in the NP-C cerebellum. Gene microarray analysis revealed upregulation of genes involved in both excitatory and inhibitory neurotransmission encoding subunits of the ionotropic glutamate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA) GluR4 and GABA(A) receptor beta2. We also demonstrated that BM-MSCs, when originated by fusion-like events with existing Purkinje neurons, develop into electrically active Purkinje neurons with functional synaptic formation. This study provides the first in vivo evidence that upregulation of neurotransmitter receptors may contribute to synapse formation via cell fusion-like processes after BM-MSC transplantation into mice with neurodegenerative disease. Disclosure of potential conflicts of interest is found at the end of this article.

PubMed Disclaimer

Similar articles

Cited by

Publication types