Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;50(1):130-6.
doi: 10.1161/HYPERTENSIONAHA.106.084103. Epub 2007 Apr 30.

Decreased endogenous levels of Ac-SDKP promote organ fibrosis

Affiliations

Decreased endogenous levels of Ac-SDKP promote organ fibrosis

Maria A Cavasin et al. Hypertension. 2007 Jul.

Abstract

There is convincing evidence that chronic treatment with N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a peptide normally found in tissues and biological fluids, reduces collagen deposition in the heart and kidneys of hypertensive rats and rats with myocardial infarction. However, it is not known whether endogenous Ac-SDKP at basal concentrations has any physiological function related to collagen deposition. Prolyl oligopeptidase is responsible for release of Ac-SDKP from its precursor thymosin-beta(4). When we treated rats with a specific oral rolyl oligopeptidase inhibitor, Ac-SDKP decreased significantly in the plasma, heart, and kidney. In the present study, we tested the hypothesis that endogenous Ac-SDKP at basal levels plays a physiological role, antagonizing and/or preventing excessive collagen deposition. We studied whether chronic blockade of Ac-SDKP promotes collagen accumulation and/or accelerates this process in the presence of a profibrotic stimulus such as angiotensin II. We found that decreased basal levels of Ac-SDKP increased cardiac and renal perivascular fibrosis and promoted glomerulosclerosis. Moreover, in the presence of angiotensin II decreasing basal levels of Ac-SDKP accelerated interstitial cardiac fibrosis attributable to an increase in cells that produce collagen. We concluded that Ac-SDKP participates in the regulation of collagen content under normal conditions. We believe this is the first study showing that this peptide plays a physiological role at basal concentrations, preventing organ collagen accumulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources