Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006:26:65-74.
doi: 10.3233/bd-2007-26106.

Priming the 'soil' for breast cancer metastasis: the pre-metastatic niche

Affiliations
Free article
Review

Priming the 'soil' for breast cancer metastasis: the pre-metastatic niche

Bethan Psaila et al. Breast Dis. 2006.
Free article

Abstract

The long prevailing model of metastasis recognizes the importance of both "seed" and "soil" for metastatic progression [1]. Much attention has focused on understanding the molecular and genetic factors that confer an intrinsic metastatic advantage to certain tumor cells. Meanwhile, changes occurring within distant tissues, creating a "soil" conducive for tumor invasion, have been largely neglected. Bone marrow-derived hematopoietic progenitor cells (HPCs) recently emerged as key players in initiating these early changes, creating a receptive microenvironment at designated sites for distant tumor growth and establishing the "Pre-Metastatic Niche" [2]. This insight into the earliest stages in the metastatic cascade revises our concept of the metastatic "microenvironment" to include physiological cells recruited from the bone marrow. Moreover, the concept of pre-metastatic tissues as 'niches' similar to physiological stem cell niches establishes a paradigm in which disseminated tumor cells may reside within a highly defined microcosm, both supportive and regulatory, and which may confer specific functions on indwelling cells. Understanding the cellular and molecular cross-talk between "seed" and "soil" may further our understanding of the factors that govern both site-specific patterning in metastasis and the phenomenon of tumor dormancy. This may lead to therapeutic strategies to detect and prevent metastasis at its earliest inception.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources