Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;37(6):1538-47.
doi: 10.1002/eji.200636875.

Bacillus subtilis spores: a novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen

Affiliations
Free article

Bacillus subtilis spores: a novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen

Andrew G C Barnes et al. Eur J Immunol. 2007 Jun.
Free article

Abstract

There is a current need for safe, cheap, and effective vaccine adjuvants, to combine with sub-unit antigens to enhance their immunogenicity. In this study we have used probiotic Bacillus subtilis spores, known to be safe and fully tolerated by ingestion in man, and explored their ability to influence the magnitude and diversity of immune responses induced against two model antigens, tetanus toxoid fragment C (TT) and ovalbumin (OVA) in mice. The results show that B. subtilis spores not only increased antibody and T cell responses to a co-administered soluble antigen, but also broadened them, to include both antigen-specific CD4+ and CD8+ T cell responses as well as complement and non-complement fixing antibody isotypes. Furthermore, following intranasal immunization, spores augmented specific IgA to co-administered antigen both in the local respiratory and distal vaginal mucosa, as well as increased antigen-specific IgG antibody in draining LN and blood. Collectively, these data demonstrate that naturally occurring, non-pathogenic, non-commensal spores of B. subtilis both instruct and augment polyvalent immune responses and highlight their clinical potential in future vaccines to generate broad-based immunity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources