Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 May;117(5):1137-46.
doi: 10.1172/JCI31405.

Immune surveillance of tumors

Affiliations
Review

Immune surveillance of tumors

Jeremy B Swann et al. J Clin Invest. 2007 May.

Abstract

The ability of the immune system to identify and destroy nascent tumors, and to thereby function as a primary defense against cancer, has been debated for many decades. Recent findings by a number of investigators in both mouse models of cancer and humans with cancer now offer compelling evidence that particular immune cell types, effector molecules, and pathways can sometimes collectively function as extrinsic tumor suppressor mechanisms. This work provides the basis for further study of natural immunity to cancer and for rational use of this information in the design of immunotherapies in combination with other conventional cancer treatments.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Extrinsic tumor suppression by the immune system.
Transformed cells escaping intrinsic control are subjected to extrinsic tumor suppressor mechanisms that detect and eliminate developing tumors before they become clinically apparent. This is known as the elimination phase of a broader process that has been termed cancer immunoediting. Cancer immunoediting takes into account the observation that the immune system both protects the host against tumor development and promotes tumor growth. Cancer immunoediting is now considered a process composed of 3 phases: elimination, or cancer immune surveillance; equilibrium, a phase of tumor dormancy where tumor cells and immunity enter into a dynamic equilibrium that keeps tumor expansion in check; and escape, where tumor cells emerge that either display reduced immunogenicities or engage a large number of possible immunosuppressive mechanisms to attenuate antitumor immune responses leading to the appearance of progressively growing tumors. These phases have been termed the 3 Es of cancer immunoediting. DR5, death receptor 5; IDO, indoleamine 2,3-dioxygenase; MICA/B, MHC class I chain–related antigens A and B; RAE1, retinoic acid early transcript 1; sMICA/B, soluble MICA/B; ULBP, UL16-binding protein. Figure adapted with permission from Advances in Immunology (117).

References

    1. Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 2002;3:991–998. - PubMed
    1. Dunn G.P., Old L.J., Schreiber R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004;22:329–360. - PubMed
    1. Shankaran V., et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Proc. Natl. Acad. Sci. U. S. A. 2001;10:1107–1111. - PubMed
    1. Smyth M.J., et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 2000;192:755–760. - PMC - PubMed
    1. Street S.E., Trapani J.A., MacGregor D., Smyth M.J. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J. Exp. Med. 2002;196:129–134. - PMC - PubMed

Publication types