Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;70(4):909-16.
doi: 10.4315/0362-028x-70.4.909.

Effect of spectral range in surface inactivation of Listeria innocua using broad-spectrum pulsed light

Affiliations
Free article

Effect of spectral range in surface inactivation of Listeria innocua using broad-spectrum pulsed light

Sarah E Woodling et al. J Food Prot. 2007 Apr.
Free article

Abstract

Pulsed light (PL) treatment is an alternative to traditional thermal treatment that has the potential to achieve several log-cycle reductions in the concentration of microorganisms. One issue that is still debated is related to what specifically causes cell death after PL treatments. The main objective of this work was to elucidate which portions of the PL range are responsible for bacterial inactivation. Stainless steel coupons with controlled surface properties were inoculated with a known concentration of Listeria innocua in the stationary growth phase and treated with 1 to 12 pulses of light at a pulse rate of 3 pulses per s and a pulse width of 360 micros. The effects of the full spectrum (lambda = 180 to 1,100 nm) were compared with the effects obtained when only certain regions of UV, visible, and near-infrared light were used. The effectiveness of the treatments was determined in parallel by the standard plate count and most-probable-number techniques. At a fluence of about 6 J/cm(2), the full-spectrum PL treatment resulted in a 4.08-log reduction of L. innocua on a Mill finish surface, the removal of lambda < 200 nm diminished the reduction to only 1.64 log, and total elimination of UV light resulted in no lethal effects on L. innocua. Overwhelmingly, the portions of the PL spectrum responsible for bacterial death are the UV-B and UV-C spectral ranges (X < 300 nm), with some death taking place during exposure to UV-A radiation (300 < lambda < 400 nm) and no observable death upon exposure to visible and near-infrared light (lambda > 400 nm). This work provides additional supporting evidence that cell death in PL treatment is due to exposure to UV light. Additionally, it was shown that even a minor modification of the light path or the UV light spectrum in PL treatments can have a significant negative impact on the treatment intensity and effectiveness.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources