Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;25(8):1931-9.
doi: 10.1634/stemcells.2007-0097. Epub 2007 May 3.

Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons

Affiliations

Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons

Hyojin Lee et al. Stem Cells. 2007 Aug.

Abstract

Motoneurons represent a specialized class of neurons essential for the control of body movement. Motoneuron loss is the cause of a wide range of neurological disorders including amyotrophic lateral sclerosis and spinal muscular atrophy. Embryonic stem cells are a promising cell source for the study and potential treatment of motoneuron diseases. Here, we present a novel in vitro protocol of the directed differentiation of human embryonic stem cells (hESCs) into engraftable motoneurons. Neural induction of hESCs was induced on MS5 stromal feeders, resulting in the formation of neural rosettes. In response to sonic hedgehog and retinoic acid, neural rosettes were efficiently directed into spinal motoneurons with appropriate in vitro morphological, physiological, and biochemical properties. Global gene expression analysis was used as an unbiased measure to confirm motoneuron identity and type. Transplantation of motoneuron progeny into the developing chick embryo resulted in robust engraftment, maintenance of motoneuron phenotype, and long-distance axonal projections into peripheral host tissues. Transplantation into the adult rat spinal cord yielded neural grafts comprising a large number of human motoneurons with outgrowth of choline acetyltransferase positive fibers. These data provide evidence for in vivo survival of hESC-derived motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease. Disclosure of potential conflicts of interest is found at the end of this article.

PubMed Disclaimer

Publication types

LinkOut - more resources