Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;103(2):629-36.
doi: 10.1152/japplphysiol.01133.2006. Epub 2007 May 3.

Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention

Affiliations
Free article

Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention

Cassandra E Morris et al. J Appl Physiol (1985). 2007 Aug.
Free article

Abstract

Magnetic field therapy has recently become a widely used complementary/alternative medicine for the treatment of vascular, as well as other musculoskeletal pathologies, including soft tissue injuries. Recent studies in our laboratory and others have suggested that acute static magnetic field (SMF) exposure can have a modulatory influence on the microvasculature, acting to normalize vascular function; however, the effect of chronic SMF exposure has not been investigated. This study aimed to measure, for the first time, the adaptive microvascular response to a chronic 7-day continuous magnetic field exposure. Murine dorsal skinfold chambers were applied on day 0, and neodymium static magnets (or size and weight-matched shams) were affixed to the chambers at day 0, where they remained until day 7. Separate analysis of arteriolar and venular diameters revealed that chronic SMF application significantly abrogated the luminal diameter expansion observed in sham-treated networks. Magnet-treated venular diameters were significantly reduced at day 4 and day 7 (34.3 and 54.4%, respectively) compared with sham-treated vessels. Arteriolar diameters were also significantly reduced by magnet treatment at day 7 (50%), but not significantly at day 4 (31.6%), although the same trend was evident. Venular functional length density was also significantly reduced (60%) by chronic field application. These results suggest that chronic SMF exposure can alter the adaptive microvascular remodeling response to mechanical injury, thus supporting the further study of chronic application of SMFs for the treatment of vascular pathologies involving the dysregulation of microvascular structure.

PubMed Disclaimer

Publication types

LinkOut - more resources