Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;11(4):325-35.
doi: 10.1016/j.media.2007.03.003. Epub 2007 Mar 30.

MR image segmentation of the knee bone using phase information

Affiliations

MR image segmentation of the knee bone using phase information

Pierrick Bourgeat et al. Med Image Anal. 2007 Aug.

Abstract

Magnetic resonance (MR) imaging is a widely available and well accepted non invasive imaging technique. Development of automatic and semi-automatic techniques to analyse MR images has been the focus of much research and numerous publications. However, most of this research only uses the magnitude of the acquired complex MR signal, discarding the phase information. In MR, the phase relates to the magnetic properties of tissues, information which is not found in the magnitude signal. As a result, phase is a complement to the magnitude signal and can improve the segmentation and analysis of MR images. In this paper, we consider the automatic classification of textured tissues in 3D MRI. Specifically, we include features extracted from the phase of the MR signal to improve texture discrimination in the bone segmentation. Our approach does not require phase unwrapping, with the MR signal processed in its complex form. The extra information extracted from the phase provides better segmentation, compared to only using magnitude features. The segmentation approach is integrated within a novel multiscale scheme, designed to improve the speed of pixel based classification algorithms, such as support vector machines. An order of magnitude increase is obtained, by reducing the number of pixels that need to be classified.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms