Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 4;129(3):511-22.
doi: 10.1016/j.cell.2007.02.046.

Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2

Affiliations
Free article

Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2

Erin J Whalen et al. Cell. .
Free article

Abstract

beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.

PubMed Disclaimer

Publication types

LinkOut - more resources