Molecular basis of the CRAC channel
- PMID: 17482674
- PMCID: PMC2735391
- DOI: 10.1016/j.ceca.2007.03.002
Molecular basis of the CRAC channel
Abstract
Ca(2+) release-activated Ca(2+) (CRAC) channels, located in the plasma membrane, are opened upon release of Ca(2+) from intracellular stores, permitting Ca(2+) entry and sustained [Ca(2+)](i) signaling that replenishes the store in numerous cell types. This mechanism is particularly important in T lymphocytes of the immune system, providing the missing link in the signal transduction cascade that is initiated by T cell receptor engagement and leads to altered expression of genes that results ultimately in the production of cytokines and cell proliferation. In the past three years, RNA interference screens together with over-expression and site-directed mutagenesis have identified the triggering molecule (Stim) that links store depletion to CRAC channel-mediated Ca(2+) influx and the pore subunit (Orai) of the CRAC channel that allows highly selective entry of Ca(2+) ions into cells.
Figures
References
-
- Miller MJ, Wei SH, Parker I, Cahalan MD. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science. 2002;296:1869–1873. - PubMed
-
- DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature. 1984;307:465–468. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
